
ü We defined “class-aware transferability” and found 
that “same mistakes” occur mostly, however, non-
trivial portion of “different mistakes” exists
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• We classify adversarial transferability into three cases.
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(1) Same mistake: 
Fooled towards the same class

(3) Unfooled: 
No effect

(2) Different mistake: 
Fooled, but to different class
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Novel metric: Class-aware transferability

2. Transfer to 
unknown model

Class-aware transferability
Research question

1. Towards which class the models’ 
predictions are misled?

2. What are the mechanisms that 
AEs cause “same mistakes” or 
“different mistakes”? 

ü Adversarial Examples (AEs) can 
fool different models, i.e., 
adversarial transferability
ü Huge risk in our society

ü However, its mechanism is still 
not well understood

Finding 1:  Majority of the fooled cases are “same mistakes”
=> AEs have effects to fool models towards specific classes

Finding 2:  “Different mistakes” occur even between very similar models or with large perturbations.

1. Analysis

2. Non-robust features investigation

1. Same mistakes can be due to AEs containing 
“non-robust features (NRF)” (Ilyas et al. 2019), 
which are human-imperceptible but useful features

2. We show that different mistakes can occur when,
ü AEs simultaneously contain NRF of two classes
ü Two different models use those NRF differently
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Contact:ü We indicate that “non-robust features” 
can explain both “different mistakes” 
and “same mistakes”.

q Non-robust features
Correlate with label, but can 
easily change by perturbation

q Robust features
Correlate with label, even 
with small perturbation
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